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Management Summary

Vision: Imagine a world where your engineering design and analysis work is free of error-prone
and time-consuming routine tasks so that you as an engineer can stay focused on tackling engaging
questions and finding great solutions. Imagine a world where all your domain models for your
engineering analysis needs are created automatically and consistently to each other and require
no more repetitive manual interventions when updated. Imagine a world where the engineering
design time of your system is significantly reduced down to the theoretical limit of the addition of
the run time of the algorithms, therefore enabling you to concentrate on the steering of the design
process and the creation of the best solutions candidates – rather than wasting most of your time
on eliminating errors or filling the gaps in your iterative design process loops. . . .

Reality: Sounds to good to be true? Well, we at IILS believe that your time is your most valuable
and precious engineering resource, which cannot be brought back once it has been consumed –
it is gone forever. Therefore, rather then wasting your time at work with menial recurring tasks
(e.g. manual model updates) that can be automated or battling broken processes that are not
aligned to each other, your time is far better invested in creative engineering work. For this reason
we developed a novel method and a supporting software tool for the total automation of engi-
neering along the whole product life-cycle including knowledge representation and execution of
engineering activities. Combined they enable you to actually harness the benefits of automatic
consistent model creation and significant reduced design times mentioned above. The method is
the use of so called graph-based design languages as a novel way to store engineering knowledge
in a computer readable and re-executable graph representation. The software tool is the Design
Cockpit 43 R©. It takes the design language as input and generates your requested design including
all necessary models. This tandem can even respond automatically to new design challenges or
requirement changes if the necessary solution principles are encoded in the design language.

Implementation: Our approach to design can be best compared to the widely used technology
of programming languages and their corresponding powerful compiler suites. Graph-based design
languages in UML correspond to the source code – here all your specific knowledge is stored. And
the Design Cockpit 43 R© corresponds to the compiler – herewith the design language is compiled.
The result is in the former case an executable computer program and in the later case the finished
design of your system. If this sparked your interest but you’re short on time, make sure to check at
least the figures in section 3 (starting at page 10) to get a general idea of what is possible and has
already been done. (Clicking the blue reference numbers jumps directly to the content.)
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1. Introduction – Current Challenges and new Technologies

The industrial success in the future will strongly depend on the usage of appropriate
knowledge-based engineering tools in the design and manufacturing processes. With the
ongoing spread of information technologies in the overall corporate structure (leading to
a broad digital transformation of a company also called “Industry 4.0”) companies face
four major challenges that stem from historically grown structures:

1) Scattered Data Sources. Many corporate data and information structures resemble
more or less the structure of an archipelago – many loosely connected data islands.
Here time and effort is spent searching for the required information and preparing
them for the current process needs.

2) Incoherent Processes Some processes are already established. With new challenges
and customer needs new processes are defined. This meta-process is usual and goes
on over the lifetime of a company, thus forming an individual company process
mesh/landscape. However, there is seldom a concentrated effort to actually revise
all processes on their interplay, or their usefulness in the scope of new technologies.
So, processes that may have been useful in the past may now very well be overcome.

3) Manual Data Exchange via Documents. Knowledge exchange between experts and
different design phases is mainly document driven. This means there is an additional
overhead in generating and reading those documents – time that could be better
spent on actually designing the system.

4) Manual Model Creation and Update. “Modern products are typically complex and
may comprise components and functions from a multitude of different domains such
as electrical, mechanical, hydraulic, and thermal. Each domain usually requires a
dedicated simulation model to be instantiated in a specific software tool” [3]. The
creation of those specific domain models is usually done manually. Especially in early
design phases, where model updates are quite frequent, this manual process is error
prone (model consistency) and slow (manual iterations).

However with the advent of new information technologies these challenges now bear a
huge potential for time and cost savings. This document presents a novel way of design by
the use of the so-called graph-based design languages on the basis of the Unified Modeling
Language (UML) as an innovative solution approach to encode all aspects of engineering
know-how in an universally applicable and executable central model. This design language
is then processed by a so-called mechanical design compiler1, a supporting software tool
(e.g. the Design Cockpit 43 R© by IILS), to generate all domain models automatically.

In this context it is worth mentioning that there is an ongoing controversial scientific
debate whether or not such a mechanical design compiler for design compilation is feasi-
ble [4, 5]. As always, the optimists claim the answer to be “yes”, while the pessimists claim
that the answer is “no” or even “never”. IILS just asks you for no more than to make your
own engineering jugdement after having gone through the results shown in this paper.

This white paper is structured as follows: Section 2 analyses the current state of the
design of complex systems and shows our solutions to the challenges mentioned. Section 3
shows graph-based design languages with the Design Cockpit 43 R© in action with examples
from industry and research. Section 4 summarizes the findings, sets the challenges found
here into context with our solution and provides a glimpse into a possible future.

1The term mechanical design compiler was first coined in 1989 by Alan Ward [1, 2] from MIT in several
publications [1, 2], as the analogon to the at the time so-called silicon compilers for VLSI-chip design.
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2. Theory – Problem Analysis and an Instrumental Solution

To get the idea how our approach works and why we believe that it is the best solution to
the challenges mentioned, a short analysis of the design of complex systems (also called
cyber-physical systems) is presented in this section followed by condensed descriptions of
graph-based design languages and the supporting compiler Design Cockpit 43 R©.

2.1. Theory Problem or Management Problem

From the literature on the design of complex systems it can be stated that “system integra-
tion [is] currently the largest obstacle to effective cyber-physical system (CPS) design, which
is due primarily due to a lack of a solid scientific theoretical foundation for the subject. [. . .]
Most large system builders have given up on any science or engineering discipline for system
integration, they simply treat it as a management problem” [6]. That means, currently many
companies try to resolve the lack of knowledge regarding the actual physical couplings in
the design of complex systems with manual rework in the case of an insufficient nominal
product performance – manual rework that is at least partly or in some cases even entirely
automatable, thus freeing time and resources for other productive tasks.

Furthermore it is stated that “system integration today relies on ad hoc methods: After
all the components have been designed and manufactured, existing integration methods aim
simply at ’making it work somehow’. As the complexity of engineered systems continues to
increase, our lack of a systematic theory for systems integration creates more and more prob-
lems” [6]. This reflects the experiences of manufacturers, that the integration problem gets
more and more difficult with increasing complexity and number of components. For this
reason, a support with knowledge-based methods and tools could be very beneficial.

Lastly, it is concluded that “finding a solution is difficult because system integration is
the phase where essential design concerns usually separate into physical systems, software,
and platform engineering come together and the hidden, poorly understood interactions and
conflicts across design domains suddenly surface” [6]. This leads to the conclusion, that the
design of complex systems is a highly coupled network of interacting entities in various
domains, e.g. mechanical, electrical, thermal, hydraulic, etc. that can only be mastered
if there is a comprehensive theoretical understanding of the complex system and of its
design process. In order to achieve this, an adequate support in information technology
resp. a support with clever software tools is mandatory. Exactly this requirement of a
design methodology and a supporting software tool suite for the design automation of
complex systems is fulfilled by graph-based design languages and the Design Cockpit 43 R©,
which are now industrially available.

2.2. Design of Complex Systems – A Brief Overview

In the following section, a generic design sequence of complex systems is shown in fig. 1.
Red arrows symbolize the topological order in design decision making, i.e. the sequen-
tial nature of design steps due to existing pre- and postconditions. Engineering design
often is done manually, which leads to the usual bottleneck in time and budget, or can be
automated. The latter requires the development of a deep understanding of information
processes and algorithms for design. Yellow arrows symbolize the iterative nature of the
design process which occur when a dead-end is reached and one or even more former
design decisions have to be undone or revised (so-called backtracking) and a new design
decision path has to be restarted from there.
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In fig. 1 the outer iteration “0) Product Design Space Exploration / Product Design Op-
timization Loop” makes only sense if all inner design activities are automated. The generic
sequence of the necessary steps inside (numbered 1 through 9) in the design of complex
systems reads as follows: Starting with “1) design requirements”, subsequent mappings
are performed after the German design methodology by Pahl and Beitz [7], starting with
a mapping from the requirements to the abstract product functions, followed by a mapping
of product functions to solution principles and lastly a mapping from solution principles
to embodiments or components.

0) Product Design Space Exploration / Product Design Optimization Loop
(DoE, with mixed continuous-discrete optimization)

1) Design Requirements / Systematic German Design Methodology (Pahl/Beitz)
(requirements management with ReqIF)

2) Abstract Physics
boundary conditions, loads, materials

3) Solution Path Generator (SPG)
symbolic solutions, sensitivity analysis, system wide derivatives

4) Product Architecture
topology and parametric predesign with SPG

5) FTA / FMEA
evaluation: topology and parametric pre design of product architecture

6) 3D Packaging / 2D Layout
spatial placement of components

7) 3D Piping
network topology (matter)

7) 3D Routing
network topology (energy, information)

8) Central Product Model
design graph as holistic representation of the design

9) Simulations
(CAD, CAS, MKS, FEM, CFD, Control, Thermal, ...)

2) Abstract Geometry
BREP and CSG, product structure tree

Figure 1: Necessary steps of the design of complex systems in their natural order. Red arrows symbolize the
sequential procedure of designing – usually the next step can only be started if the previous design tasks
were completed successfully. Yellow arrows symbolize the iterative nature of the design process – results of
later design steps may prompt design changes in earlier stages and the design has to be redone from there.

Due to the antagonistic design principles “form follows function” and “function follows
form”, geometry and physics are potentially both at the same time a requirement or result
of a design process, depending on the design context [8]. The next step in the process is the
representation, generation and handling of “2) abstract geometry and abstract physics”.
In graph-based design languages the representation of geometry and physics is called
abstract, since both geometry (represented as BREP, CSG and product tree) and physics
(i.e. loads, boundary conditions, materials) are represented independently of any vendor-
specific, proprietary data format or tool in the Unified Modeling Language (UML). All the
design knowledge is therefore stored in UML, an open international ISO-Standard.

In the conceptual design phase geometry can often be represented with parameters and
constraints. Also physics can at first be modeled in a simplified manner with non-linear
algebraic equations without the need for partial differential equations. The “3) solution
path generator” (SPG) handles and solves the resulting equation systems. The next step
defines the “4) product architecture” of the system, i.e. determines which components ex-
ist and how they are interconnected. This product architecture is then evaluated top-down
with a “5) fault-tree analysis (FTA)” and bottom-up with “5) failure-mode effects analysis
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(FMEA)”, depending on the properties of the defined architecture (i.e. component relia-
bility and interconnections) and is modified automatically if necessary. Once the product
architecture is determined and the components are selected, the system components with
their geometry are spatially arranged in step “6) 3D-Packaging / 2D-Layout”. After the
packaging is completed, the interconnections of the components can be created physically
in step “7) 3D-Routing / 3D-Piping)”, either with electrical cables for transport of energy
or information or pipes for the transport of gases or liquids.

The steps in fig. 1 allow the compilation of the graph-based design languages with the
Design Cockpit 43 R© into a consistent “8) central product model” in form of the design
graph which holds all the system design information. Based on the design graph, individ-
ual simulation plug-ins (i.e. CAD, MKS, FEM, CFD, etc.) of the Design Cockpit 43 R© map
the abstract geometry and physics into domain-specific “9) simulation” tools (i.e. solvers).
With this capability of mapping the abstract knowledge representation towards almost any
proprietary piece of software with an API (application programming interface), arbitrary
software landscapes found in companies can be interfaced. The remaining outer design
loop “0) Design Space Exploration” finally represents an optimization loop, which is often
employed with design of experiments (DoE) methods for computer-aided exploration of
design spaces, see sections 3.1 and 3.2.

2.3. Graph-based Design Languages – (Re-)Executable Design Knowledge

Graph-based design languages are a new means for the holistic description of the task
of engineering design which follows the composition scheme of natural languages where
words form a vocabulary and rules form a grammar. Words in the context of graph-based
design languages are the building blocks of the design on which rules operate. The set of
all words (building blocks) in the language is called the vocabulary. It is encoded as an
UML class diagram. Rules encode model transformations, they instantiate and operate on
individual building blocks from the vocabulary which in turn are encoded in an extended
UML instance diagram. The set of all rules is called a production system, which is encoded
in an UML activity diagram. These three parts form the graph-based design language and
have to be created manually by one or several human(s) as an upfront investment to
the engineering design process. When the production system is executed by a so-called
mechanical design compiler (here the Design Cockpit 43 R© see section 2.4) the complete
design is created automatically and stored in a central model called the design graph, i.e. a
holistic digital model of the system containing all parts, interconnections and parameters.
From this central data model all other necessary domain models of a system, e.g. a CAD-
model or a wire harness model, can also be generated automatically.

Here design language means that all allowed sentences in the grammar (i.e. all regular
combinations of words) are a valid system design. The term graph-based means that an
individual node in the graph serves as an abstract placeholder for a piece of design knowl-
edge (i.e. a concept, a value, a physical component or an assembly thereof) and the edges
in the graph express the (potentially N -dimensional and multidisciplinary) couplings be-
tween the different nodes (i.e. the different pieces of design knowledge). A (very) simple
example for a car could look like this: Words are Car, Chassis, Door. Rules are (A) if there
is nothing, create a car, (B) if there is a car, create its chassis, (C) if there is a car chassis,
attach a door. Then a production system could look like this: (A) once, (B) once, (C) four
times. The resulting design graph has one car with a chassis and 4 doors – how neat that
the way you talk about your system can be encoded and used for design automation!
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This simple design language could be extended by other words and rules to eventually
design the whole car, including power calculations, geometry, all components down to the
last screw and so on – see section 3 for applications in various fields.

The underlying graph data structure can be incrementally modified, by means of rule-
based graphical data model transformations, and enriched with design knowledge until
the design is completed in the aspired level of detail. The resulting design graph data
structure can be automatically compiled and transformed into different domain-specific
models (such as 3D geometry in a CAD program, a finite element representation in a FEM
program, a finite volume representation in a CFD program, a lumped parameter model in
a simulation program, etc.). Design languages support teams of design engineers by au-
tomatic consistent model and simulation generation, thus relieving the design team from
frequent tedious and error-prone routine tasks. Figure 2 shows the integrated information
flow with graph-based design languages and the Design Cockpit 43 R©.

Manual creation

Feedback Loop

Translators ModelsDesign Language

Automatic creation

Vocabulary

Rules

Production
System

Design
Cockpit

Design
Graph

CAD

FEM

CFD

CAS

Routing

. . .

MBS

Thermal

OpenCASCADE
CATIA

ANSA
CALCULIX

Design Cockpit 43

Adams

MATLAB & Simulink

ESATAN-TMS

Fluent
OpenFOAM

REDUCE
Mathematica

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 2: Information flow and automatic model creation with design languages [9]: A design language
consisting of a vocabulary, rules and a production system is processed by a compiler (here: Design Cockpit
43 R©) to generate a holistic central model of a system - the design graph. Translators, such as for CAD, then
automatically generate specific domain models, e.g. 3D-geometry in OpenCASCADE or CATIA [3].

Consequently graph-based design languages are a powerful concept which in combina-
tion with the Design Cockpit 43 R© allows to encode and automate design and manufac-
turing knowledge. The advantages of such an automation support are three-fold: firstly,
the individual parameter sets in the different physical models are consistent to each other,
secondly, after either a topological or parametrical change all the models are automat-
ically updated to restore and guarantee the overall model consistency, and thirdly, the
design process it automated, thus reducing the time needed for design cycles down to the
execution time of the program.

2.4. The Design Cockpit 43 – A Mechanical Design Compiler Implementation

The Design Cockpit 43 R© creates a design graph during the compilation of the design lan-
guage. This design graph is a complete, holistic model of the system design and contains
all parts, parameters and interconnections. Design languages thus can be directly com-
pared to well-known computer programming languages (such as C or JAVA) and their
compiler suites. All design knowledge is encoded in the design language (source code),
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the compiler only transforms the code into an executable program, or, in the case of a
mechanical design compiler, into the finished design of a system.

One implementation of such a mechanical design compiler is the Design Cockpit 43 R©

developed by IILS. It features an integrated development environment (IDE) for the graph-
based design languages including, but not limited to, means for creating, running and
debugging graph-based design languages. Also included are translator plug-ins for various
domains, e.g. CAD, MBS, FEM, CFD and many more, see fig. 2. These plug-ins transform
the abstract knowledge stored in the design graph into actual domain models of the system
for analysis or further (manual) design. For example, the abstract geometry of a system
is instantiated with a CAD kernel such as OpenCASCADE or CATIA, this geometry can
then be used as input for other processes. Since the knowledge is stored in an abstract
way, the change of CAD kernel requires no changes in the model, just the selection of
another output format, see [3]. This mapping of abstract design knowledge to a specific
software tool can be done for any domain, if there is a pair of domain design language
and translator plug-in.

The Design Cockpit 43 R© features three operation modes:
1.) Full mode for the creation, modification and debugging of graph-based design lan-

guages. This mode requires also the highest level of expertise by the user.
2.) Batch mode as a “headless” mode, for embedding into other program suites. This

mode requires no expertise by the user.
3.) Slim mode is an extended batch mode with user interaction (via wizards) at prede-

fined steps in the design language. This mode can be used to build product configu-
rators, see section 3.6. It’s also used to expose only a reduced set of design decisions
to other engineers and requires therefore only little expertise by the user.

3. Applications – Examples from Industry and Research

Graph-based design languages are a powerful method which can encompass many of the
design tasks in engineering. This is on the one hand the possibility to support the whole
width of multidisciplinary design with all its many different domain models and on the
other hand the possibility to support the entire depth of one domain with its specific design
rules. Both aspects of design, width and depth, can be used at the same time in varying
granularity, leading to the optimal support of the engineer in the needed detail.

For example in the early design phases of a satellite design width covering all domains
is more important compared to design depth of one detailed domain. A satellite is a highly
coupled system spanning many domains, e.g. mechanical, electrical, thermal, etc. A valid
system design is only found when it is feasible in all domains. This can lead to many
design iterations since a change in one domain usually leads to many consequences in
other domains, e.g. the following sequence: If the power requirement increases, this leads
to bigger solar panels, so in turn the moments of inertia and the system mass change,
which leads to an increase in required propulsion power, this leads to increased tank
volume which in turn changes the moments of inertia again and so on. These iteration
cycles usually involve many dedicated domain experts.

Model creation or model updates which involve heavy topological and parametrical
changes had therefore always to be done manually in the past. The reason was that the
model consistency couldn’t be ensured otherwise. Nowadays, with the novel use of the
Design Cockpit 43 R©, the model consistency can be automatically ensured, see section 3.1.

When more detailed models become necessary in later design phases, the depth and
width of the design modeling can be increased incrementally using the same approach
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of graph-based design languages. Dedicated design languages spanning the whole design
depth for a specific sub-system can be created independently from the overall system
design language. They can be later plugged into the system design language to replace the
rough model generation from earlier design phases. Section 3.2 shows automatic design
and model creation for one sub-system of a satellite.

Sometimes whole system considerations are not necessary, e.g. in the design of less
strongly coupled systems, or when only a specific sub-task of the overall design process is
of interest, e.g. in dedicated departments which only design one aspect of a system. In that
case, graph-based design languages can be used to model and automate only the required
sub-tasks of the design. Section 3.3 shows the design automation of the complete routing
process including variations of the cabin layouts for aircrafts. In fact, automatic routing
can be done in arbitrary complex 3D geometry since the Design Cockpit 43 R© includes a
generic wire harness (routing) algorithm – its capabilities are shown in section 3.4.

Graph-based design languages can therefore be used in the early design phases to pro-
vide knowledge-based techniques “upstream” to the design process. Additionally design
languages may also be applicable to any other “downstream” engineering activity of the
whole product life-cycle. Since the creation of the digital factory can be seen and under-
stood as a design task on its own, design languages also support the subsequent automatic
generation of a digital factory according to the system specification of the earlier designed
virtual product. Section 3.5 shows the continuous process chain from first concepts over
the actual system to the factory work cell which manufactures said system on the exam-
ple of a skin panel of an aircraft. The continuous integration in this process chain can
also be used to include rapid prototyping as is shown in section 3.6 on the example of a
3D-printed coffee maker which has been designed with a product configurator based on
graph-based design languages.

3.1. Multidisciplinary Design – System Level

The design of a complex system spanning many domains can be completely automated
through the use of graph-based design languages and the Design Cockpit 43 R©. General
system design rules and requirements can be encoded in a graph-based design language
as well as the design of all necessary sub-systems. At each step in the design process
models consistent to the current state of design and hence each other can be generated
automatically enabling optimal design choices.

A first almost completely automated design of a complex system was developed in a PhD
thesis [10] for a small satellite (the FireSAT [11] mission), based on previous work [12].
This includes design based on a set of requirements, automated thermal analysis and
simulation of orbit behaviour in different operational modes. The FireSAT design language
also includes the automatic design of some of the sub-systems: payload (telescope), power,
communication and AOCS (attitude and orbit control). Additionally the design language
of the FireSAT makes use of other design languages created by their respective domain
experts, namely for: abstract geometry [3, 13], thermal analysis [14] and automated rou-
ting [15, 16, 17]. Figure 3 shows some of the models of the FireSAT generated with the
design language for small satellites.

Models can be created in analytic domains, e.g. for controls as well as in geometric
domains, e.g. for thermal analysis or routing. Other models are: the functional model
of the satellite and its sub-systems including all relevant design equations and boundary
conditions and a first concept of automatic finite element analysis utilizing the Design
Cockpit 43 R©’s capability for abstract physics (in development).
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Figure 3: Overview of automatically generated consistent domain analysis models of a small satellite from
a central model (design graph). Models can be created in geometric domains, e.g. for thermal analysis, as
well as in analytic domains, e.g. for controls. The automated model creation then allows to raster the design
space in a design of experiment (DoE), thus identifying optimal architecture choices for the current set of
requirements [3, 10, 13, 14, 18]. (If you’re reading on a screen, zoom in for more details.)

Automatic model generation follows the principles laid out in section 2. The design
language is processed by the Design Cockpit 43 R© which generates the design graph, the
holistic model of the system under design - it stores all information in an abstract manner.
Several translators for specific domains then instantiate the model in the requested gran-
ularity in their own domain and software tool, e.g. the geometry model is created with
the Design Cockpit 43 R©’s capability for abstract geometry, either with OpenCASCADE or
CATIA, depending on the used translator plug-in, i.e. the CAD program can be changed at
run-time with the push of a button without any change in the underlying model. Support
for other systems is in development. This switch of a specific domain tool with another one
can be done in any other domain as well – provided there is a software tool alternative
and a corresponding translator plug-in.

The creation of a design language, e.g for the highly complex task of satellite design,
can take up to several months. However once created, the design time of the encoded
system is reduced to the run time of the algorithms in the design language [10]. Thus
enabling rapid turn around times, which then allow for a sampling of the design space
to find to optimal solution for the current set of requirements. The section “Architecture
Trades” in fig. 3 shows such a design space sampling with up to 4 alternative topologies of
the communication system of the satellite, see [10, 18] for more details.

Next steps in the development of the design language for the FireSAT could strive to in-
clude all aspects of satellite design. Right now the design language starts with the mission
statement, the preceding design phase could be modeled to include the mission analysis
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as well. For each subsystem more solution variants could be encoded, e.g. to expand the
power subsystem from solar panels to include radio thermal generators (RTG) and fuel
cells. Another addition could incorporate more choices in the satellite structure, e.g. addi-
tionally to the layered cuboid a segmented cylinder etc. [10].

3.2. Multidisciplinary Design – Sub-System Level

A system and its sub-systems can be modeled in one design language as is shown in sec-
tion 3.1. It is also possible to use a more modular approach where specific sub-systems are
modeled in their own design language. These design languages can be triggered either
on their own or in a larger context, e.g. to only lay out one sub-system or to replace the
original design language included in the overall design language.

In fact this modularization is not limited to sub-systems but can be done for individual
domains as well, as was also shown in section 3.1. This allows for each domain expert to
express his design knowledge in a dedicated and detailed design language. Other experts
than can simply trigger this design language in their own design language. Figure 4 shows
the production system of a design language for satellite propulsion systems which in turn
uses design languages for reliability analysis [19], geometry [3] and routing [16].
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Figure 4: (LEFT) Design knowledge for satellite propulsion systems encoded in a productions system with
design rules in sub programs (horizontally) and overlay of corresponding generated models (vertically).
Starting with one of three system types, the design and models are created for topology, parametrics, relia-
bility, geometry and piping [20]. (RIGHT) Sampling of the design space in a design of experiment (DoE) that
can be spanned with the design language. Each data point is a completely laid out system in topology and
parametrics. Turquoise lines show a change of “best” system in terms of mass. This version of the image is
an excerpt showing only the left half, the full version can be found in [20]. (If you’re reading on a screen,
zoom in for more details.)

The production system shown on the left of fig. 4 follows an usual design process.
Starting with one of three possible system types different variants of the selected system
type can be created. Specific domain models are created successively with the design
process. For a more detailed explanation see the next page and [20].

First the system topology is generated, i.e. all functions, parts and their interconnec-
tions. The topology can be visualized in a flow schematic. The next step adds parameters,
e.g. mass, volumes, power and equations and iteration loops to the design and solves those
resulting in the mass balance. Here also the parts of the system are selected. Right now
part selection is done with a fixed set with one type per function, e.g. one type of check
valve, except for the tanks, they are selected via a lookup-table depending on the needed
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storage volume. With topology and parametrics in place the reliability can be evaluated,
e.g. with a fault tree analysis [19]. If the system suffices, the next step creates the ge-
ometry of the parts of the system. As a last step in the design language, the parts of the
propulsion system are then interconnected with pipes generated with the Design Cockpit
43 R©’s automatic routing capability to create the so-called equipment panels [20].

With the system and model generation automated, the design space of possible propul-
sion systems that can be generated with this design language, can be visualized as shown
on the right side of fig. 4. The figure shows the left half of an extended DoE run which
generated 453 propulsion systems in about 5 hours on a regular personal computer (Quad-
core processor at 2,8GHz). Each data point is a completely laid out system in topology
and parametrics. Points are linearly connected for better visualization of trends. The ad-
vantages of the design space exploration in that way are twofold: Firstly, this allows to
immediately identify critical points in the design, where a small change in requirements
facilitates a system change, and secondly, to discover more benign areas where changes in
requirements do not promote a system change, can be found.

Future versions of the design language for satellite propulsion systems could improve
on the part selection to include more parts in the lookup-table. This would allow for
automatic trade-offs, e.g. to build-in less reliable and cheaper parts or a few expensive
but more reliable parts. The calculation methods could also be improved to get a better
prediction of fuel masses per maneuver, e.g. to include temperature changes in the satellite
or real gas effects. Further improvements could include the automated integration of the
propulsion system into a satellite.

3.3. Design Automation – Process Integration

Additionally to the design of whole (sub-)systems the approach of graph-based design
languages is also applicable in a smaller scope, e.g. the automation of a specific task in an
established design process. Figure 5 shows the automation of parts of the design process
of an aircraft cabin, with the generation of floorplan, 3D-model and wire harness model.

The composition of the cabin harness is directly coupled with the cabin layout. For
each seating row there is an overhead panel which includes reading lamps, buttons to call
for flight attendees etc. additionally there may be an in-flight entertainment system with
screens and audio jacks. These functions are driven by a small electronic box installed on
top of the ceiling panel of the seating row. Depending on the chosen electrical architecture
these small boxes are in turn connected to bigger management nodes. The number of
managed boxes determines the size of those management nodes - a point for optimization,
a few big or many small ones. Thus the number and positions of the seats determines
directly the position and number of the electronic components which in turn define the
harness length and architecture.

The automated design process begins with the generation of a cabin layout from a
set of requirements, e.g. evacuation times, seat distances, passenger capacity, and so on.
The cabin layout can be visualized with an automatically generated floorplan. Once the
layout is fixed the CAD-model of the cabin interiour is generated by loading pre-defined
3D-geometry, e.g. seats or overhead bins, at the respective coordinates. Now the routing
space can be extracted, this is the maximum possible volume where cables could be placed.
Components of the electrical network, e.g. electronic boxes, are placed inside the routing
space as start and endpoints for the routing algorithm. In a last step, the Design Cockpit
43 R©’s routing algorithm generates the wire harness of the aircraft cabin.

With this automated process in place, quick variation studies in the form of “What hap-
pens if. . . ” are possible, e.g. the door is moved by one (fraction of a) frame or the lavatory
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Figure 5: Automated design of an aircraft cabin including routing. From left to right: a set of requirements
(not shown) drives the generation of the cabin layout, manual intervention is possible, e.g. to move the
door to another frame if desired. According to the layout pre-constructed geometry is placed to generate
a CAD-model. This then allows to calculate the maximum installation space for cables, the routing space.
In this routing space network components, e.g. electronic boxes, are placed as start and end points for
the routing algorithm. As last step the Design Cockpit 43 R©’s routing algorithm generate the cables and the
electrical wire harness [15, 21]. (If you’re reading on a screen, zoom in for more details.)

to passenger ratio is changed. Without automation such architecture trades would take
up to several days/weeks/months and were simply not feasible for many iterations - since
for each trade all models have to be updated by hand. Now a complete analysis cycle in
the cabin design is completed within hours including consistent domain models for cabin
layout (for/from operations), a CAD geometry (for/from construction in 3-D) and a wire
harness (from/for network analysis) – all generated form a central model which covers
several distinct engineering disciplines, the design graph [15]. To give some numbers, the
problem size includes about 745 equipment boxes which are connected with 1357 cables
– of course this number depends on the chosen cabin layout.

“A future task will be an even more detailed model implementation of this system integra-
tion problem to support the developing engineer in the design by further process automation.
The data, collected from block diagrams and technical documentations of former aircrafts, can
be replaced by the real data of the actual aircraft development. After that, algorithms consid-
ering functional requirements can be developed, to determine the number of equipment boxes
automatically and to achieve automatic placement (e.g. packaging) by suitable algorithms”,
as elaborated in more detail in [15].

3.4. Design Automation – Automated 3D-Routing and Harness Generation

An important design effort constitutes the connections between different system parts,
i.e. the cables for the transport of energy and information and pipes/hoses for the trans-
port of matter. Manual routing can occupy an entire division of a company, where an army
of engineers is tasked with “painting splines in 3D”. This recurring task can entirely be au-
tomated, thus freeing engineers to do actual analysis and design, e.g. exploring different
topology variants of the connection networks or finding trade-of candidates, e.g. the idea
to vary size and number of management nodes in section 3.3. To support this design step,
the Design Cockpit 43 R© includes a graph-based design language for automated routing
in arbitrary complex 3D-geometry. Figure 6 shows selected examples of various routing
scenarios generated with the Design Cockpit 43 R©.

The automated routing of cables including harness generation has now reached indus-
trial quality and is used in automotive as well as aerospace applications. The automated
routing of pipes is in the late stages of development, first applications are in the maritime
industry with automated design of SCR-Systems [22].

A proof of concept video of the routing capability using a spatial maze can be found on
our website [17]. Automatic routing for aerospace applications has been achieved in the
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Figure 6: Selection of examples created with the Design Cockpit 43’s generic routing algorithm capability for
arbitrary complex 3D-geometry on the basis of graph-based design languages. From left to right: IILS Proof
of concept, automatic routing in a complex spatial maze [17]. Astronautics Automatic Routing of an entire
small satellite (Flying Laptop [23]) in a few minutes [16]. Automotive “Cockpit in 3 weeks” automatic
routing as part of an integrated design process developed for the IDEaliSM Use Case 3 [24]. Aeronautics
Close up of the generated routing, in an early state of the algorithm development, for the entire aircraft
cabin of section 3.3 [15]. (If you’re reading on a screen, zoom in for more details.)

context of two satellite projects. Namely the FireSAT [11] as example in a PhD thesis [10]
(also see section 3.1) and the Flying Laptop [23] (launch scheduled 2017) as a real world
comparison test case for the routing algorithm [16]. Further applications are developed
right now for the automotive industry in the context of the EU-Project IDEaliSM [24] (use
case 3), here the objective is to significantly reduce the overall design time of an entire car
cockpit down to 3 weeks - automatic routing is an important step in that process. Last but
not least routing of the entire aircraft cabin described in section 3.3 was achieved with an
early version (2013) of the routing capability. In fact the Design Cockpit 43 R©’s automatic
routing capabilities can be utilized in any engineering discipline where routing is required.

The Design Cockpit 43 R©’s automatic routing capability can either be used stand-alone
or in conjunction with other design languages, thus allowing the automation of parts of
already established processes as well as new ones. Future version of the Design Cockpit
43 R©’s routing capability will include routing of pipes and hoses.

3.5. Continuous Process Chain – Concept to System to Factory Planning

Changes in early design phases can have quite large effects in later design stages, when
a small change at the beginning leads to huge changes and efforts later on, e.g. the di-
ameter and length of an aircraft cabin is changed, this in turn changes the curvature and
decomposition of the panels which comprise the fuselage, this can lead to a change in
manufacturing sequence or tools needed. As of right now there seems to be no way to
easily predict the consequences of design changes down the process chain in a economic
manner, to see what early change accounts for the cascades of later changes – or is there?
Graph-based design languages may handle that easily.

With the central model, incremental model modifications and automatic domain model
creation within graph-based design languages are an excellent way to track and analyze
the consequences of design changes/decisions in every design phase. Figure 7 shows a
continuous process chain for an aircraft panel, from the design of the outer shape of an
aircraft down to the layout of the work cell in a factory which assembles the panel.

With the process chain built, it is now possible to automatically design the outer shape
of an aircraft, derive shape and decomposition of the skin panels, and even design a work
cell in a factory which produces the panels. This in turn allows the investigation of the
behavior of the entire design and manufacturing sequence. Since now any change in any
design phase is automatically propagated to later design phases, the consequences of de-
sign changes can easily be assessed. With this new knowledge, manufacturing constraints
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Figure 7: Example of a continuous process chain built with graph-based design languages. From left to
right: The outer shape of an aircraft is designed with a design language [25]. To this outer shape description
another design language adds boundary conditions regarding manufacturing, e.g. maximal frame distance
or rivet sizes, and creates the panels which are then connected to sections of panels forming the outer hull
of the aircraft [26]. From this panel description another design language can derive shape and placement
of tools as well as manufacturing sequences to build up a work cell in a factory which can produce the
panels [27]. This process chain is fully transparent, meaning a change in requirements early in the design
process may change the shape of the aircraft. This change can be propagated down the process chain to
automatically redesign the panels and even the factory. (If you’re reading on a screen, zoom in for more
details.)

can then be included in the preliminary design phase, e.g. the optimal size of each panel
for optimal manufacturing efficiency, thus reducing cost and effort later on.

Future Versions of this process chain could include all parts of an aircraft, which can be
manufactured in a factory, and the design of all work cells in a factory. This would allow
to design the optimal factory for a given system or to design the optimal system for a
given factory. Of course, this process to build a continuous process chain with graph-based
design languages, can be repeated for any system.

3.6. Continuous Process Chain – System Requirements to Rapid Prototyping

Requirements Engineering is the starting point of the design process in many companies.
While this approach allows to design and manufacture complex systems, it is not without
its drawbacks, e.g. after the design has already been fixed, individual needs of new cus-
tomers are difficult if not impossible to implement. This means new customers can only
chose from a set of predefined design variations, or have to make a premium invest to get
an “optimal” solution. This large set of design variants also leads to increased complexity
and management effort of said variants.

However, with graph-based design languages the requirements and rules governing the
design of a system can be encoded in a re-executable manner with varying input data
already in mind, i.e. the customer requirements of the system. A new product variant that
is consistent to the requirements and design rules can then be created automatically. This
would enable companies to offer “one of a kind” product configurations with little to no
extra cost/effort after the initial setup of a continuous process chain.

A proof of concept implementation of such a continuous process chain has already been
done with graph-based design languages in [28] for a coffee maker. Not only is a design
language used to automatically create a product, but also the the Design Cockpit 43 R© abil-
ity to display design specific user interfaces in the design process is utilized thus creating
a “true” product configurator. True in that sense means that the product variants are not
read from a database - instead the customer can change topology and parameters and still
gets a valid and individual design which can be manufactured. Figure 8 shows one pane
of the product configurator, various generated valid coffee maker designs and a resulting
product manufactured with rapid prototyping technology.

Further additions to the design language could encompass designs for similar household
products, e.g. espresso machines or electric kettles. The integration of the manufacturing
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Figure 8: Proof of concept of a continuous process chain for “one of a kind” coffee makers including arbi-
trary user input through a product configurator created with graph-based design languages and the Design
Cockpit 43 R©. From left to right: sample pane of the product configurator for coffee makers showing the
modification of the shape of the water tank. From this user input the underlying design language creates in-
dividual coffee makers honoring the encoded requirements and design rules. One design of a coffee maker
was manufactured via rapid prototyping to demonstrate the feasibility of the entire process chain not only
with a computer model but with an actual product [28]. (If you’re reading on a screen, zoom in for more
details.)

effort could be improved upon with automatic data transfer to the 3d-printer or even
addition of new processes, e.g. production and assembly techniques for components. Ul-
timately, the deployment of true product configurators on the base of graph-based design
languages in the industry could revolutionize the way in which systems are designed and
sold. This means that a solution for the quite complex and current problem of mass cus-
tomization of a product with “lot-size 1” can be achieved straightforward by means of
graph-based design languages.

4. Conclusion – Future Possibilities

The challenging problems of data structures (inconsistencies) and design processes (time
to market) were identified. This prompted a brief analysis of the currently employed de-
sign methods and the design of complex systems in general, resulting in a new design
method (graph-based design languages) and supporting software (the Design Cockpit
43 R©). The successful application of graph-based design languages has been demonstrated
on various industry and R&D examples in section 3.

Automated multidisciplinary design, including automatic consistent model creation as
well as Design of Experiments (DoE), is shown on system level for a satellite (section 3.1)
and on sub-system level for a satellite propulsion system (section 3.2).

The integration of graph-based design languages in an existing design process is demon-
strated on the example of automatic cabin layout and subsequent routing of the cabin wire
harness driven by seat and electronic equipment positions (section 3.3). Stand alone rout-
ing examples are presented in section 3.4.

The possibility to build continuous process chains is shown using the example of an
aircraft outer shape and the corresponding factory work cell in section 3.5. This contin-
uous process chain allows the tracking and propagation of design decisions and changes
through all design stages. A process chain is also built for the design and manufacturing
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of a coffee maker (section 3.6) to demonstrate the use of graph-based design languages
as “true” product configurators, which allow a wide range of parametric and topologi-
cal changes by the customer during the design process. All examples together show the
power of graph-based design languages and the Design Cockpit 43 R©. Yet, these examples
represent only a subset of the possibilities of graph-based design languages and the Design
Cockpit 43 R©.

Key to the vast extend of applicability of design languages in the whole product-life
cycle as well as in individual applications is the underlying central graph data structure,
the so-called design graph. Since a graph allows for arbitrary complex structures and
relations between nodes, any aspect of engineering knowledge can be encoded with it.
The central model allows seamless integration of various domains at any point during the
design process in the necessary resolution. Changes in requirements or the design process
are encoded in the rules and the production system of the design language leading to
an incrementally growing executable knowledge base. In that knowledge base the design
knowledge is stored in an abstract, implementation independent data format (i.e. UML).

The design language is processed by the Design Cockpit 43 R© to create the actual domain
models for analysis from the abstract description. This enables the decoupling of know-
ledge from vendor specific software tools. As shown in fig. 2 the Design Cockpit 43 R© can
interface various software alternatives per domain, e.g. CATIA or OpenCASCADE for CAD.
New programs can be added with new translators – the design data stays the same.

To conclude, graph-based design languages and the Design Cockpit 43 R© are a way to
avoid the shortcomings of many current company data structures and design processes
identified in section 1. Scattered data sources can be eliminated with a central model, the
design graph. Its creation depends on a set of valid design rules which formalize design
decisions and steps, thus ensuring coherent processes that work together. Graph-based
design languages also reduce the need to write lengthy documents since all design deci-
sions are encoded in the production system and the resulting design with its parameters
is stored in the design graph, i.e. exchange between your experts can be augmented with
executable, and therefore validatable, information. Additionally a PDF documentation of
the design language containing all classes, rules, production systems and comments, can
be created automatically with the press of a button. Manual model creation and updates
can be entirely a thing of the past, with graph-based design languages all domain models
are created automatically for your analysis needs.

That raises an important question: what remains for the engineers to do? The answer
is simple. Engineers in the future will invest their time into more productive and creative
work. That means, the focus of an engineers work will shift from automatable routine
tasks, e.g. manual model creation and manual model updates, back to engaging mental
tasks of human problem solving and idea generation in order to come up with new so-
lutions and more clever designs. These new designs and solutions can then be encoded
into graph-based design languages for model synthesis and analysis. This shift of work is
already part of the ongoing digitalization of processes and IILS is an expert in bringing
these concepts to reality. If this sparked your interest, feel free to contact us.
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A. IILS – About us

IILS, short for “Ingenieurgesellschaft für intelligente Lösungen und Systeme mbH”, which
translates to “engineering company for intelligent solutions and systems”, was founded in
1999 as a Spin-Off of the Institute of Statics and Dynamics of Aerospace Structures at
Stuttgart University by the former institute director, Prof. Dr.-Ing. Bernd-Helmut Kröplin.
From 1999 to 2013, Dr.-Ing. Stephan Rudolph served as founding CEO. Today IILS is
headed by the two CEOs Dipl.-Ing. Roland Weil (customer projects) and Dipl.-Ing. Peter
Arnold (software development). IILS operates on two sites, the engineering development
office located in the business park Echterdingen in Leinfelden-Echterdingen and the com-
pany headquarter in Trochtelfingen, Germany.

At IILS we believe that time is your most valuable and precious engineering resource,
it cannot be bought with money and once consumed it is gone forever. For this reason we
developed a novel method of designing and a supporting software tool. Combined they
enable you to harness the benefits of automatic consistent model creation and significant
reduced design times. The method is the use of so called graph-based design languages as a
novel way to store engineering knowledge in a computer readable and re-executable graph
format. The software tool is the Design Cockpit 43 R© which takes the design language as
input and generates your requested design including all necessary models. In this respect
our main goal is to create the worldwide best compiler for graph-based design languages. In
addition to this, we develop innovative algorithms which optimally enhance the function-
alities of graph-based design languages in the design of complex systems, e.g. 3D-Routing
of electrical wire harnesses in arbitrary complex geometry or algorithms for the automated
3D-Piping of hydraulic systems. For this purpose, we closely cooperate with universities in
the scope of doctorates embedded in various research projects.

Especially large companies, due to their well established management structures “are
perfectly capable of incremental innovation, however to get disruptive innovations to work,
impulses from the outside are necessary” [29]. We see therefore our role as Think-Tank for
our clients, with the software development mainly as a means to facilitate the successful
implementation of the (disruptive) innovation of graph-based design languages into their
corporate structure, design and development processes.

B. IILS - Contact us

Feel free to contact us with your idea of cooperation:

Dipl.-Ing. Roland Weil (CEO, customer projects)
IILS Ingenieurgesellschaft für Intelligente Lösungen und Systeme mbH
Leinfelderstrasse 60, D-70771 Leinfelden-Echterdingen, Germany
Office +49 711 217249011
Mobile +49 163 3072760
Email weil@iils.de

Prof. Dr.-Ing. Markus Till (head of strategy)
IILS Ingenieurgesellschaft für Intelligente Lösungen und Systeme mbH
Albstrasse 6, D-72818 Trochtelfingen, Germany
Mobile +49 152 01904669
Email till@iils.de
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